On the analytical soliton-like solution for the anisotropic Heisenberg model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L113
(http://iopscience.iop.org/0305-4470/24/3/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:05

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the analytical soliton-like solution for the anisotropic Heisenberg model

Darko V Kapor \dagger
Institute for Nonlinear Science, R-002, University of California at San Diego, La Jolla, CA 92093, USA

Received 6 November 1990

Abstract

It is shown that a recently presented analytical solution for the solitons in an anisotropic Heisenberg model does not satisfy the essential demands for being a soliton solution.

The problem of the exact analytical solution for solitons in the classical anisotropic Heisenberg ferromagnet was first presented by Tjon and Wright [1], who formulated the equation and studied its numerical solutions.

The Hamiltonian studied has the form:

$$
\begin{equation*}
H-H_{0}=-\mu f \sum_{j}\left(S_{j}^{z}-S\right)-J \sum_{j}\left(S_{j} \cdot S_{j+1}-S^{2}\right)-J \tau \sum_{j}\left(S_{j}^{z} S_{j+1}^{z}-S^{2}\right) . \tag{1}
\end{equation*}
$$

Here S_{i} is the classical angular momentum vector of the length $|\boldsymbol{S}|=S$ associated with the site i of a periodic chain. μ is the magnetic moment, f the external magnetic field, J is the energy of the nearest-neighbour interaction and τ is the anisotropy parameter.

Škrinjar et al [2] have shown that the application of Holstein-Primakoff boson representation [3] combined with the application of boson coherent states [4] leads in the classical limit to the same equation which was put into the following form:

$$
\begin{align*}
& A_{\xi}^{2}\left[1+2 \tau A^{2}\left(1-\frac{1}{2} A^{2}\right)\right] \\
& \quad=\gamma_{0} A^{2}\left[1+2 \tau / \alpha^{2} \gamma_{0}-V^{2} / 4 \gamma_{0}-A / 2\left(1+4 \tau / \alpha^{2} \gamma_{0}\right)+\left(\tau / 2 \alpha^{2} \gamma_{0}\right) A^{4}\right. \tag{2}
\end{align*}
$$

In obtaining this equation, it was assumed that the phase of the soliton has the form

$$
\begin{equation*}
\phi(x, t)=\Omega t+\varphi(\xi) \quad \xi=x-v t \tag{3a}
\end{equation*}
$$

and the amplitude has the form

$$
\begin{equation*}
A(x, t)=A(\xi) \tag{3b}
\end{equation*}
$$

where v is the soliton velocity. Following notation used in [2]:

$$
\gamma_{0}=\frac{S \Omega+\mu f}{J \alpha^{2}} \quad V=S v /\left(J \alpha^{2}\right)
$$

where α is the lattice constant. It is important to notice that the relation to the standard interpretation in terms of spin components is established through the relation

$$
\begin{equation*}
A^{2}(\xi)=1-\cos \theta(\xi) \tag{4}
\end{equation*}
$$

\dagger Permanent address: Institute of Physics, Faculty of Sciences, 21000 Novi Sad, Yugoslavia.
where θ is the polar angle measuring the deviation of the spin from the direction of z axis.

Quite recently, Lan and Wong (Lw) [5] proposed that the solution for

$$
\begin{equation*}
B=A^{2} \tag{5}
\end{equation*}
$$

should be looked at in the form:

$$
\begin{equation*}
B=\frac{1}{a+b \cosh \mu \xi} \tag{6}
\end{equation*}
$$

a, b and μ are the parameters to be determined from the differential equation (2) (expressed in terms of B). At this stage, it is important to notice that A is a real quantity, so necessarily $B>0$, implying $a+b \geqslant 0$. (This corresponds to the maximal value of B at $\xi=0$.) In fact, the case $a+b=0$ leads to the result that diverges at the origin, so it cannot be accepted for the soliton solution. We are left with the condition

$$
\begin{equation*}
a+b>0 \tag{7}
\end{equation*}
$$

(In fact, from (4), (5) and (6), it follows that $a+b \geqslant 0.5$, but it is not relevant for the present discussion.)

The general idea is to substitute (6) into equation (2) and obtain the set of equations for a, b and μ. The following set is obtained [5]:

$$
\begin{align*}
& b^{4}\left(4 \gamma_{0}+8 \tau / \alpha^{2}-V^{2}\right)=b^{4} \mu^{2} \tag{8}\\
& b^{2} \mu^{2}(2 a b+2 \tau b)=\left(4 \gamma_{0}+8 \tau / \alpha^{2}-V^{2}\right) 4 a b^{3}-\left(2 \gamma_{0}+8 \tau / \alpha^{2}\right) b^{3} \tag{9}\\
& b^{2} \mu^{2}\left(a^{2}-\tau+2 a \tau-b^{2}\right) \\
& \quad=\left(4 \gamma_{0}+8 \tau / \alpha^{2}-V^{2}\right) 6 a^{2} b^{2}+\left(2 \tau / \alpha^{2}\right) b^{2}-\left(2 \gamma_{0}+8 \tau / \alpha^{2}\right) 3 a b^{2} \tag{10}\\
& -b^{2} \mu^{2}(2 \tau b+2 a b)=\left(4 \gamma_{0}+8 \tau / \alpha^{2}-V^{2}\right) 4 a^{3} b+4 \tau a b / \alpha^{2}-\left(2 \gamma_{0}+8 \tau / \alpha^{2}\right) 3 a^{2} b \tag{11}\\
& -b^{2} \mu^{2}\left(a^{2}-\tau+2 a \tau\right)=\left(4 \gamma_{0}+8 \tau / \alpha^{2}-V^{2}\right) a^{4}+2 \tau a^{2} / \alpha^{2}-\left(2 \gamma_{0}+8 \tau / \alpha^{2}\right) a^{3} \tag{12}
\end{align*}
$$

Here, a typographical error from [5] in equation (8) is corrected.
From this set, one can deduce the values of a, b and μ and also obtain additional constraints for the parameters of the system. Our aim here will be to show that the above system cannot lead to a solitonic solution.

From (8), one easily obtains

$$
\begin{equation*}
\mu^{2}=4 \gamma_{0}+8 \tau / \alpha^{2}-V^{2} \tag{13}
\end{equation*}
$$

which is Lw equation (54). From (9), one can obtain Lw equation (55)

$$
\begin{equation*}
a=\tau+1 / \mu^{2}\left(\gamma_{0}+4 \tau / \alpha^{2}\right) \tag{14}
\end{equation*}
$$

or in a different form

$$
\begin{equation*}
2 \gamma_{0}+8 \tau / \alpha^{2}=2 \mu^{2}(a-\tau) \tag{15}
\end{equation*}
$$

Using (10), one can obtain Lw equation (56):

$$
\begin{equation*}
b^{2}=-5 a^{2}+2 \tau a+\left(\gamma_{0}+4 \tau / \alpha^{2}\right) 6 a / \mu^{2}-2 \tau / \alpha^{2} \mu^{2}-\tau \tag{16}
\end{equation*}
$$

but its combination with (15) leads to another useful expression

$$
\begin{equation*}
b^{2}=a^{2}-4 a \tau-\tau-2 \tau / \mu^{2} \alpha^{2} \tag{17}
\end{equation*}
$$

Using (15), equations (11) and (12) can be rewritten in the form:

$$
\begin{align*}
& -2 b^{2} \mu^{2}(a+\tau)=4 a^{3} \mu^{2}-6 a^{2} \mu^{2}(a-\tau)+4 \tau a / \alpha^{2} \tag{18}\\
& -b^{2} \mu^{2}\left(a^{2}+2 \tau a-\tau\right)=a^{4} \mu^{2}-2 a^{3} \mu^{2}(a-\tau)+2 \tau a^{2} / \alpha^{2} \tag{19}
\end{align*}
$$

(Notice that in the corresponding Lw equation (58) $2 \tau \alpha^{2} / \alpha^{2}$ is written as 2τ.)
Combination of (17) and (18) now gives

$$
\begin{equation*}
2 a+8 a \tau+2 \tau+4 \tau / \alpha^{2} \mu^{2}=0 \tag{20}
\end{equation*}
$$

while using (17) and (20) to rewrite (19), we obtain

$$
\begin{equation*}
4 a+1+2 / \alpha^{2} \mu^{2}=0 \tag{21}
\end{equation*}
$$

This means that a must be negative.
Finally, if we use (21) to replace only the term linear in a in (17), we arrive at the conclusion that

$$
\begin{equation*}
a^{2}=b^{2} \tag{22}
\end{equation*}
$$

The first possibility, $b=a$ gives $a+b<0$, so it is not acceptable. The second one, $b=-a$ implies $a+b=0$ which also does not lead to a solitonic solution.

In this way, we have shown that the system of equations (8)-(12), leads to the solutions which either contradict the initial assumption ($B^{2} \geqslant 0$), or do not behave as soliton solutions, implying that the soliton solution cannot be found in the proposed form (6).

The author gratefully acknowledges many elucidating discussions with Professor M A de Moura, and the hospitality of Professor K Lindenberg's group where the work was performed.

References

[1] Tjon J and Wright J 1977 Phys. Rev. B 153470
[2] Skrinjar M J, Kapor D V and Stojanović S D 1989 J. Phys: Condens. Matter 1725
[3] Holstein T and Primakoff H 1940 Phys. Rev. 581098
[4] Glauber R J 1963 Phys. Rev. 1312766
[5] Lan H and Wong K 1990 J. Phys. A: Math. Gen. 233923

